XML
A New Web Site Architecture

Jim Costello
Derek Werthmuller
Darshana Apte

Center for Technology in Government
University at Albany, SUNY

1535 Western Avenue

Albany, NY 12203

Phone: (518) 442-3892

Fax: (518) 442-3886

E-mail: info@ctg.albany.edu
http://www.ctg.albany.edu

September 2002

©2002 Center for Technology in Government
The Center grants permission to reprint this document provided this cover page is included.

Table of Contents

XML: A NeW WeD Site ATCHITECTUIEevutruirtiitirtirtirtertestet ettt sttt sttt ettt eb et be bbb e e b e 1
A BELEET WAY? .ottt ettt et e et ettt et e bt e bt e s h et e bt e e a b e e beesab e e beeshbe e beenatesabeenaneeateens 1
Defining the PrODICIMcc.eiiieeieiieee et ettt et ettt e s e estesaeesaesseensesseenseeseensenseansenns 1
Partial SOIULIONS ..uveuiiiiiiieiieiietieteee ettt b bbbt b et ettt et e bt et e bt e bt e bt e bt s bt e bt e b s b e st et e e e s ennene 2
Addressing the ROOt PTODICIIScocviiiiiiiiieiieieit ettt ettt ettt e s e essesseesesnaensessnensens 2

Figure 1. Sample XML file (all code simplified for eXample)ccoceeieriirieniiiiieneiiee e 4
Figure 2. Sample XSL File (all code simplified for eXample)ccooveeieriiciinieieriee e 6
Figure 3. Formatted Page Produced from Sample XML File using XSLcccccceoiviinininininininneneieene 7
WOTKEIIOW TINPACEevieiieiieieciieeeee ettt ettt ettt e e st e e b e et e esseest e seeseeseensesseensesseensesseansenseensenseensenns 7
Figure 4. Workflow (Simplified) in HTML-based Web Site Managementcc.cccceceeevenerinenenenenennens 8
Figure 5. Workflow (Simplified) in XML-based Web Site Managementcccoceeveerierieneerienvenieneeneens 9
WOTKING With XIML ..ottt ettt et e et e st e e st e s st ess e e st esseeseensesneensesnsessesnsenseensesseensenseans 9
CONVEIEING QUL SITE ..uviitieieieieiieeierieeiest e et et et e st ete et esteestesesseessessaesseassesseassenseensenseensenseensesseensesssesesssensenssensens 10
Figure 6. Transforming Documents from PDF to RTF to XMLccccocoiiiinininiiiiicieieieeeeeese e 11
The Advantage of an XML DOCUMENLEc.ccieiieiiieiieeieieeiete et ete st ete st eaeseebessaeseesaessessseseessenseensesseensesees 11
Transforming Content With XISLocciiiiiiiiei ettt ettt e st nte e s e e nseeseenseeneeseenes 13
Figure 7. Connecting XML and XSL FIlescccoiiiiiiieieiiieiei ettt sttt ees 13
Figure 8. Transforming XML Documents into XHTML and PDFccccoiniiiiiiiniiiinnceeee 14
Maintaining StYle CONSISTEICY ...cveruieeieriieiiertieiertestesteesteetteteetesteeeesseesesseessesseessesseessesssensessseseassenseensesseensesses 14
Figure 9. Sample XSL File for Importing (all code simplified for example).......cccccovvvveriecienieceneene, 15
Figure 10. Importing Another XSL File (all code simplified for example)cceeveveeieinininincncncnnenn 16
Figure 11. Web Page Produced Using XSL IMport Filescccocieiieiieciiiieieeeee e 17
DyNamic INTETACIVE SILES ...eecverrieiiriieiiieierteeierteete st ste st etesteesesseesteeseesseeseesseessesseessesseensessaensesssensenssensenssensennes 17
Figure 12. Logic, Content, and Style Separation in Cocoon Publishing Frameworkc..ccccoccvenenenn 18
Figure 13. XSL File Containing Logic Code (Cocoon XSP File, simplified for example)c.co..... 19
Figure 14. Sample Dynamic HTML Pa@Eccccoivieiiieieiieieeieieeeeis ettt sttt ens 20
LeSSONS LEATIIEM ...ttt b ettt et et et ebe bbbt bbb bbb e 21
RESOUICES ..ottt ettt ettt et sat et s at et sa e bt e e s et e eae et e eaeenaeeasenaeemnenaee 22
Basic XIML RETETEINCEScc.eeuiriiriiriiiiiieiieetierte ettt ettt ettt ettt be bt et nbe e 22
Other General XML RETEIENCES ...c..oouiriiiiriiiiiiiiiiieere ettt sttt ettt 22
DIOCBOOK ettt h bbb bt b bttt et a bbbt bt bt sae et ebe e 22
Tutorials 0n XIML/XSL/XSLT ..ottt ettt ettt et ettt sbe bbb nbe e 22
Newsletters, LiStS, and ATCRIVESocviiiiiiiieie et e e e et e e e e eeteeeeeareeeenaeeeeneeeenaneeenns 22

Conversion Tools and EdITOTScooviiiiiiiiieie ettt e et e et e e e e e e e eaeeeeteeeeeaneeeennees 23

XML: A New Web Site Architecture

A Better Way?

As Web sites have grown in size, complexity, and prominence over the past five years, Web
site management has become a growing concern for Webmasters, system administrators, and
organizations as a whole. Unfortunately, the technology used to build most Web sites (HTML)
is designed to produce individual Web pages easily, but does not provide a structure to easily
maintain entire Web sites or manage the workflow involved in Web site production and
maintenance.

Like many organizations, the Center for Technology in Government faced critical issues as its
Web site matured over a five-year span from a simple location for posting reports and project
results to a highly complex site with over 1,300 Web pages, thousands of hyperlinks, multiple
navigation and search routes, interactive applications, and ongoing updates. The Web site also
began to assume a more prominent status as a primary communication and outreach tool for the
organization, so its performance, appearance, and timeliness became of greater concern. The
question we confronted was not unusual:

How could we continue to manage a Web site that was continually getting larger and
more complex without just throwing more money and resources into it?

There had to be a better way.

Defining the Problem

The question could be stated simply, but it was a big question. In looking for a solution,
we needed to develop a better understanding of the problems involved. We identified three
problems:

* Some of the tools and technologies upon which Web sites are based have built-in
obstructions to effective ongoing development and maintenance.

* Web technologies are constantly evolving, so it’s difficult to determine the best solution
from an array of promising advances.

* Web site management is not just a technological challenge solvable with technological
answers; it’s an organizational and workflow challenge as well. Many Web site problems
arise as workflow bottlenecks, so solutions must address workflow throughout the
organization.

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 1

Partial Solutions

In regard to the first two problems we identified, there was good news. HTML, the building
block of Web pages, had evolved and continues to evolve as a more manageable and flexible tool
for handling larger Web sites. Basic advances in the HTML specification such as the use of
Cascading Style Sheets (CSS) to separate style from content marked a significant improvement
in the ability to manage a Web site. With each new release, most HTML software packages
added more site management and template features that enhanced the ability of Web developers
to maintain consistency and propagate changes throughout a site.

However, we found that these developments did not really address the underlying problems of
workflow and structure. They alleviated some difficulties, but still operated within the structural
restrictions of the HTML page in which the content is never fully separated from the style. It
works fine if you choose to involve the Web team (someone with HTML and Web scripting
knowledge) in nearly all aspects of production, design, and delivery, and you create your Web
site content for only one medium (the computer monitor Web page). But that is seldom, if ever,
the case.

Addressing the Root Problems

So was there an answer that addressed the root workflow problems and still offered a viable
alternative to the status quo? Fortunately, XML (eXtensible Markup Language) seemed to
address precisely these problems.

But what is XML? Here’s a definition from the W3C Web site (www.w3c.org):

XML is a set of rules (you may also think of them as guidelines or conventions) for
designing text formats that let you structure your data. XML is not a programming
language, and you don't have to be a programmer to use it or learn it. XML makes it
easy for a computer to generate data, read data, and ensure that the data structure is
unambiguous.

“Structure your data.” That sounded like a step in the right direction. But let’s stop for a
moment to examine what “structured data” means within an XML context. Put more simply:

XML is a markup language for documents containing structured information.

“Markup” means that all text within a document is enclosed within tags that describe that
content. Most people are familiar with markup through HTML where an <h1></h1>tag indicates
a first-level heading and <p></p> indicates a new paragraph. However, notice that those two
sample HTML tags do not really describe the data enclosed within them. They identify the
enclosed data as headings or paragraphs, but do not describe the data itself. Is it a chapter
heading? A paragraph within a list? While it tells a Web browser (such as Netscape or Internet
Explorer) how to display the data, it does not define the type of data it contains. The same
<h1></h1> tag can be used for the title of a book, the author, and the chapter titles. These are
three very different types of data, but nothing within the HTML tags differentiates them.

2 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

XML employs markup in a fundamentally different way. If used properly, XML tags do not just
identify data, they describe it. For example, a book title would be tagged with a <title></title> tag
within a <book></book> tag. The author would be tagged within a <author></author> tag and
even more precisely with <firstname></firstname><lastname></lastname> tags. The chapter title
would be tagged with a <title></title> tag within a <chapter></chapter> tag. Notice that unlike
HTML, the XML tags do not contain any information about how the data will be displayed, thus
making it possible to separate content from format. XML describes the data more thoroughly

in a richly structured document. Figure 1 provides a simple example of a structured XML
document. Notice that the example contains no formatting information; that will be provided

in a linked stylesheet file that contains instructions on how to display the XML content.

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 3

Figure 1. Sample XML file (all code simplified for example)

<?xm version="1.0" ?>
< —Specify the nedia type and the correspondi ng styl esheet —

<?xm - styl esheet href="gateways_ss.xsl” type="text/xsl” nedi a="netscape”?>

<?xm - styl esheet href="gateways_ss_ie.xsl” type="text/xsl”
medi a=" expl orer” ?>

<?xm - styl esheet href="gateways_ss_|ynx.xsl” type="text/xsl” media="|ynx"?>

<book>
<title>Opening Gateways:</title>
<title>A Practical Cuide for</title>
<titl e>Designing Electronic Records Access Progranms</title>

<booki nf o>
<aut hor gr oup>
<aut hor >
<firstname>Theresa A <firstname>
<l ast nane>Par do</ | ast name>
</ aut hor >
<aut hor >
<firstname>Sharon S. </firstname>
<l ast nane>Dawes</ | ast name>
</ aut hor >
<aut hor >
<firstname>Ant hony M </firstname>
<l ast nane>Cr esswel | </ | ast nane>
</ aut hor >
</ aut hor gr oup>

<pubdat e>Decenber 2000</ pubdat e>

<addr ess>
Center for Technol ogy in Governnent
Uni versity at Al bany, SUNY
<street>1535 Western Avenue</street>
<ci t y>Al bany</city>
<st at e>NY</ st at e>
<post code>12203</ post code>
<phone>(518) 442-3892</ phone>
<fax>(518) 442-3886</fax>
<emui | >i nf o@t g. al bany. edu</ enai | >
<ot her addr >ht t p: / / ww. ct g. al bany. edu</ ot her addr >
</ addr ess>

<copyri ght >
<year >2002</ year >
<year >2000</ year >

<hol der>Center for Technol ogy in Governnent </ hol der >

</ copyri ght >

<l egal noti ce>

<para>The Center grants perm ssion to reprint this docunent

provi ded this cover page is included.</para>
</l egal noti ce>

<contract sponsor>This material is based upon work supported in
part by the National Historical Publications and Records Com

m ssi on under Grant No. 98027.</contractsponsor >

</ booki nf 0>
</ book>

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Now that you have a nicely structured document, how can you display it if there’s nothing in the
XML file to do that? Well, actually there is. As stated previously in the definition, XML is not a
programming language; it’s a set of rules for designing text formats to structure data. And XML
is not just one thing; it is defined by several related specifications, including:

* XML (eXtensible Markup Language) which defines the syntax of XML (as seen in the
sample in Figure 1)

* XSL (eXtensible Stylesheet Language) which is a language for expressing stylesheets. An
XSL stylesheet is a file that describes how to display an XML document of a given type. It
consists of three parts:

* XSLT (Transformations), a language for transforming one XML document into another.
It is used, for example, to generate HTML web pages from XML data.

* XPath, (XML Path Language), a language used by XSLT to access or refer to parts of an
XML document.

* XSL-FO (Formatting Objects), an XML vocabulary for specifying formatting semantics
and advanced styling features. It is used to produce a PDF document from an XML file,
for example.

In short, XSL enables you to take your structured XML data and selectively format it for your
various presentation possibilities.

Figure 2 contains a sample XSL file (simplified) that takes the content from the sample XML file
in Figure 1 and prepares it for presentation as an HTML page, as shown in Figure 3. Note how
the XSL file references the tags from the XML file (title, author, year, etc.) to retrieve the actual
content and gives instructions on how to present the content within those XML tags as an HTML
page (<h2 align="center”>).

Now we have one place to create, control, and maintain our content (XML file) and another
mechanism to present that content (XSL file). We have effectively separated content from style
and begun to address our root problem. By comparison, HTML tags contain both content and
style information (such as <h2></h2> which identifies a second-level heading and defines how to
present it) or contain just style information (such as which instucts a browser
to show enclosed text as bold).

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 5

Figure 2. Sample XSL File (all code simplified for example)

<?xm version="1.0"?>

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni
versi on="1. 0">

<| —Specify the XHTM. | ayout for the root tag —

<xsl : tenpl at e mat ch="book" >
<htm >
<head>
</ head>
<body>

<! —Specify to |l ook for the styling for title el enent—
<xsl : appl y-tenpl ates select="title"/>

<xsl : appl y-t enpl at es sel ect =" aut hor”/>
<xsl : appl y-tenpl at es sel ect ="year”/>

<br/ >

<p align="center”>
<xsl : appl y-tenpl ates sel ect="etc”/>
</ p>

<xsl : appl y-tenpl ates sel ect="footer1"/>

<xsl : appl y-tenpl ates sel ect ="footer2"/>
</ body>
</htm >

</ xsl : t enpl at e>

<! —Specify the xhtml style for the ‘title’ in xm file =
<xsl :tenplate match="title">

<h2 al i gn="cent er”><xsl : val ue-of sel ect="."/></h2>
</ xsl : t enpl at e>

<! —Specify the xhtm sytle for the other tenplates —

<xsl : tenpl at e mat ch="aut hor” >
<h3 al i gn="cent er " ><xsl : val ue- of sel ect="."/></h3>
</ xsl : t enpl at e>

<xsl :tenpl ate match="year”>
<h4 al i gn="cent er”><xsl : val ue-of sel ect="."/></h4>
</ xsl : t enpl at e>

<xsl :tenpl ate match="etc">
<xsl:val ue-of select="."/>

</ xsl : tenpl at e>

<xsl :tenpl ate match="footer1">
<h5 al i gn="cent er " ><xsl : val ue- of sel ect="."/></h5>
</ xsl : t enpl at e>

<xsl :tenpl at e mat ch="f oot er 2" >
<h5 al i gn="cent er " ><xsl : val ue- of sel ect="."/></h5>
</ xsl : t enpl at e>

</ xsl : styl esheet >

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Figure 3. Formatted Page Produced from Sample XML File using XSL

Opening Gateways:
A Practical Guide for

Designing Electronic Records Access Programs

Theresa A. Pardo

Sharon S. Dawes
Anthony M. Cresswell

December 2000

Center for Technology in Government
University at Albany, SUNY
1535 Western Avenue
Albany, NY 12203
Phone: (518) 442-3892
Fax: (518) 442-3886
E-mail: info@ctg.albany.edu
http://www.ctg.albany.edu

The Center grants permission to reprint this document provided this cover page is included.

©2000 Center for Technology in Government

Workflow Impact

The separation of content from style enabled us to effectively separate the functions associated
with content and style. Now the content owners (subject matter experts, project managers,
communications staff) could work on their content without the intermediary of a Webmaster or
HTML coder. In other words, content would not be developed once in a word processing format
and then redeveloped again in an HTML format and then likely redeveloped again and again for
various HTML pages or browsers.

The content could now reside in one place only: the XML file. The XSL stylesheets determine

how the content is presented in the various Web pages and browsers on which the content will
be displayed. And the presentation is not restricted to Web pages. The XSL stylesheets can

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

transform the XML file into HTML, PDF, RTF, WML — a variety of options — all working from
a single XML file.

Figures 4 and 5 illustrate the workflow impacts in moving from an HTML-based Web
architecture to an XML-based architecture. One of the advantages of using XML, as seen in
these diagrams, is that it eliminates many dependencies and redundancies in the workflow,
allows teams to work independently, and maintains a single source document (XML) with
multiple deliveries (HTML, RTF, PDF, etc.).

Figure 4. Workflow (Simplified) in HTML-based Web Site Management

Multiple Workflow Dependencies and Overlaps
Multiple ""Source'" Documents (RTF, PDF, HTML)

Content Owner
creates content
(text) in word
processor (RTF)

Y

Communications
Designer designs
layout for print

and screen (PDF)

N

i

Communication
Designer
incorporates
revised content
(PDF)

<+“—>

Web Developer

formats content

for Web display
(HTML)

/

Content Owner
revises content
(RTF)

N

Web Developer
reformats
content for Web
Display (HTML)

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Figure 5. Workflow (Simplified) in XML-based Web Site Management

Few Workflow Dependencies and Overlaps
Single "Source'" Document (XML)

Content Owner Communications Web Developer
creates content ¢) Designer designs ¢) formats content
(text) which is layout for print for display using
saved as XML and screen XSL stylesheet
> XML »
Document
Content Owner can revise Web Developer and
text without intervention of Communications Designer
Communications Designer or can revise layout and style
Web Developer and multiple without disturbing content

outputs are automatically generated

v
RTF PDF HTML
Document Document

Page

Working with XML

Recognizing that XML offers solutions to Web site architecture problems does not by itself
answer questions of how to work with XML or whether the use of XML is even realistic today.
We all live in the real world, and when dealing with Web sites, need to deal with real issues of
multiple browsers and display devices and connections. For today’s world (2002), this means that
much of the XML processing must be handled on the Web server, not on the desktop or client
device. The server “translates” the XML files and sends the appropriate HTML pages to the
client browser.

Although newer web browsers, such as Internet Explorer 6 and Netscape 7, offer some XML/
XSL support, the consistency and depth of support for the various XML specifications within
client browsers is unpredictable and unreliable. Therefore, we need to perform our XML
processing on the server. In addition, our Web site, like most Web sites today, also has database
and programming elements so we wanted to integrate these elements within the XML structure.
For these reasons we adopted the Apache Cocoon XML publishing framework for developing
and delivering our XML files. (For more information on Cocoon, which is an open-source,

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 9

server-side environment for XML processing that supports full integration of database and
programming logic, visit xml.apache.org/cocoon/).

On the development side, we encountered a similar situation in that XML software tools are
rather primitive compared to HTML tools. Some XML editors, such as XML Spy
(www.xmlspy.com) offer useful tools for developers, but are not really designed for other users
such as content owners and subject matter experts. In other words, a Web developer could use it
to create XML and XSL files, but content owners could not easily use it now for editing their
original document and saving it as XML. However, these software packages are heading in that
direction and becoming more user-friendly with time.

Converting Our Site

Once we decided what to do (convert to XML) and how to do it (use the Cocoon publishing
framework), we were ready to begin the actual task of doing it. Since much of our Web site
consists of documents (reports, project results, presentations), we began by converting one of
these documents, Opening Gateways: A Practical Guide for Designing Electronic Records
Access Programs, into an XML format. We used this 50-page guide as a prototype to test

the viability of converting our Web site while it enabled us to learn XML and the Cocoon
environment.

The first step was to convert the existing document. Like most of our publications, the final
version of the Gateways Guide was in a PDF format. Our goal was to convert this PDF into
an XML format that could serve as our final version, single-source file. We also wanted to
automate this process as much as possible to reduce the time involved and ensure consistency
in the results. To reach this goal (from PDF to RTF to XML), we used a four-step process with
two software conversion programs and two “clean-ups” after each conversion as illustrated in
Figure 6.

Our resulting XML document conformed to the DocBook standard which is a widely used
document type definition standard containing a popular set of tags for describing books and
articles (such as <book>, <chapter>, <title>, etc.). Within XML, it’s important to use standard,
widely accepted markup tags to describe your data so that you can use and share this data over
time and in a variety of applications. While nothing within XML prohibits you from creating
your own markup tags, it is not good practice because it potentially isolates your content and
limits the flexibility of stylesheets to transform and present that content. If like items (such as
chapter titles) are referenced in like ways, then one XSL stylesheet, for example, could transform
an unlimited number of different XML documents.

This conversion process worked very well for us and allowed us to convert a document within a
few hours. This does not mean that we recommend the same conversion process and tools in all
cases. Every environment has different needs. Fortunately, several conversion tools and methods
are available for a variety of situations. (See our list of references at the end of this document for
additional information on conversion tools.)

10 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Figure 6. Transforming Documents from PDF to RTF to XML

PDF Gemini 4 Manual Clean Up

Document —p (e iar ——— P | of Draft RTF

File

Manual Clean Logictran RFT
Up of Draft | ——— —
Converter

XML File Document

XML
Document

The Advantage of an XML Document

Why go to the trouble of converting the document from PDF to XML if it’s ultimately going to
be presented on the Web site as a PDF document? The advantage of converting the document to
XML can be seen in Figure 5. When the final document is an XML document, you can present it
as PDF, HTML, RTF and a variety of other formats including mobile and voice displays. In our
case, that is a major advantage.

Our Web site contains approximately 50 documents ranging from 50 to 100 pages. Most of these
are in a PDF final format and not in HTML at all. Just to produce these same documents in an
HTML format would nearly double the size of our Web site in files and pages. Plus, it would
double the complexity of maintenance since we would have at least two final versions (one in
PDF and one in HTML). In many cases, we would have three final versions (a Word document
as well) and frequently a PageMaker® or FrameMaker® version for printed publications.

Looking back, Figure 4 illustrates the impact of these multiple versions on workflow. For
example, every time the content changes in the Word document, a web developer has to edit
every HTML page impacted by the change and a new PDF has to be produced. Something as
simple as changing the title of the guide could involve changes to 50 different HTML files and
manual proofreading of documents (Word, HTML, PDF) to verify consistency.

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 11

The complexity increases when browser incompatibilities are considered. Take a simple example
of providing a text-only version of the document for users who do not use graphical browsers.
Not everyone uses Internet Explorer, Netscape, Opera or Mozilla; some people use Lynx or other
non-graphical browsers. Now we need 50 HTML pages for the graphical version, and another 50
for the text-only version. Furthermore, if we decide to use browser-specific features (IE6 and
Netscape 4 for example), we have again increased the number of HTML pages on our site.

XML alleviates these problems by:

» Creating a single source for the final version of your content (it’s in one XML file as shown
in Figure 5)

* Using multiple XSL files to selectively transform the XML document into the appropriate
output format (HTML for graphic and text-only browsers, PDF, etc.)

Rather than having multiple source files and hundreds of HTML files, a document like the
50-page Gateways Guide would have one source file and perhaps 5—-10 XSL files to produce

the multiple output formats. As content changes occur, the change is made in the single XML
file and then automatically and immediately propagated to the various output formats. A Web
developer does not have to modify dozens or hundreds of HTML pages; no one has to generate

a new PDF using Adobe® Acrobat®; and no one has to proofread all the various formats to ensure
the change was applied consistently.

Cocoon offers additional features to further ease these maintenance issues. For example, one-line
parameters identify different browsers and automatically direct users to different stylesheets
appropriate for them. Instead of 50 different HTML pages for each type of browser, you have one
line and one additional XSL file. (The next section examines these Cocoon features and XSL
files more closely.)

Unlike the HTML-based architecture which suffers from increased maintenance impacts as the
Web site grows in size and complexity, an XML-based architecture actually levels off. There is
a limited impact on maintenance as the site gets bigger and more complex.

The ease in managing the content comes from the basic property of XML that provides a total

separation of content (source) and style (output). The content or data resides in a single XML
document and different XSL stylesheets present that data differently.

12 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Transforming Content with XSL

Let’s look at the XSL stylesheet to see how it transforms and presents an XML document.

The first thing to understand about an XSL file is that it does not contain any data. It contains
instructions on how to select and present the data from an XML file. But how does an XML file
know which XSL stylesheet to use? It’s quite simple actually. In the opening lines of an XML
document, you include a processing instruction that links to the stylesheet. Figure 7 displays
these processing instructions (<?xml-stylesheet ...?>) for different browsers. In this example,
the XML file would use the “gateways_ss.xsl,” “gateways_ss_ie.xsl,” or “gateways_ss_lynx.xsl”
stylesheet depending on the client browser. The “media=" parameter at the end of each line is a
Cocoon feature that performs automatic browser detection and directs users to the appropriate
stylesheet for their browsers.

Figure 7. Connecting XML and XSL Files

<?xm version="1.0" ?>
<! —Specify the nedia type and the correspondi ng styl esheet

<?xm - styl esheet href="gateways_ss.xsl” type="text/xsl” nedi a="net scape” ?>
<?xm - styl esheet href="gateways_ss_ie.xsl” type="text/xsl” medi a="expl orer” ?>
<?xm -styl esheet href="gateways_ss.xsl” type="text/xsl” nedi a="nozill a5"?>
<?xm -styl esheet href="gateways_ss_|ynx.xsl” type="text/xsl” medi a="|ynx” ?>
<?xm - styl esheet href="gateways_ss. xsl” type="text/xsl”?>

The XSL file then uses “templates” to identify the content to select from the XML file and
specify how to format that content. A “template” corresponds to the tags in the XML document.
For example, if you look back to the sample XSL file in Figure 2, you’ll see it has templates for
“book,” “title,” “author” and so on that correspond to the tags in the original XML document.
The XSL file is selecting the content within those tags and formatting it with the HTML tags
within its “<xsl:template match>" tags. This XSL file is styling the content for display as an
HTML page in a browser. Different browser types may have different stylesheets if you choose to
design for different browsers. A PDF output would also have a different stylesheet. But all the
stylesheets use the same source XML document.

This significantly simplifies content management because it enables you to make changes to only
one content file and make no changes to the stylesheets because the content is totally separated
from the presentation.

Figure 8 illustrates how these XML/XSL transformations occur within the Cocoon publishing
framework. An XML file is processed on the server by a “parser” that analyzes and validates the
XML tags. It then uses the XSL stylesheets to transform the XML document into the appropriate
output format for the clients (PDF or HTML).

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 13

Figure 8. Transforming XML Documents into XHTML and PDF

Server Clients

XSL (XHTML)
Stylesheet

XSLT ENGINE

v

XSL JEC

Transformation

i »[PoF]

Transformation
A

v

\

XML |—p | Parser

/

v

XSL (PDF)
Stylesheet

Maintaining Style Consistency

Another advantage with the XML-based architecture is easier maintenance of consistency
throughout the site. Repeated HTML elements such as the top banner, left navigation, and
footer can be stored in separate stylesheets and imported into other stylesheets for presentation
throughout the Web site. Changes to the banner or footer are made in only one file and
propagated throughout all pages on the site. Figure 9 contains an XSL file for the top banner
of the Gateways Guide pages.

14 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Figure 9. Sample XSL File for Importing (all code simplified for example)

<?xm version="1.0""?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >

<xsl :tenpl ate match="banner” >
< —HTM. code for the CTG banner —

<! —Begi n Banner Section —

<div align="left”>

<t abl e border="0" cell paddi ng="0" cell spaci ng="0" wi dt h="705">
<tr>

<td align="left” valign="top” w dth="57" hei ght="75">

<ing border="0" src="ctg | ogo.gif”"></ing>

</ a>

</td>

<td align="left” valign="m ddl e” w dth="658" class="nane” >
Cent er for Technol ogy i n Gover nment

University at Al bany, State University of New York</
span></td>

</tr>

</t abl e>

</div>

<! —End Banner Section —

< —Begi n Menu Bar Section —
<t abl e border="0" cell paddi ng="0" cell spaci ng="0" wi dt h="705">
<tr>
<td wi dt h="705" hei ght="20" col span="2" align="center” valign="top”

bgcol or =" #2f 538a” >
Wat’ s New</ a>
About </ a>
Pr oj ect s</ a>
Resear ch</ a>
Report s
CTG Tool box
Part ner s
Educat i on</ a>

Resour ces</ a>
</td>
</tr>
</ tabl e>
</ xsl : tenpl at e>

</ xsl:styl esheet >

Importing the file into another stylesheet is also quite simple, as illustrated in Figure 10. You use
an XSL import tag to specify the file to import (such as “<xsl:import href="banner.xsl”/>").
Then, you use an apply-imports tag (such as the “<xsl:apply-imports select="banner”/>") where
you want the imported file to appear. Now your banner exists in a single file used by the entire
site. If you change your banner then you only change that one file, and all pages display the same
banner. That helps us to maintain consistency throughout our site.

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 15

Figure 10. Importing Another XSL File (all code simplified for example)

<I—inport external xsl files for banner —
<xsl :inport href="banner.xsl”/>
<I—Start the HTML Layout here —

<xsl:tenpl ate mat ch="book” >

<ht ml >

<head>

<titl e><xsl:val ue-of sel ect="@ooknane”/ >: <xsl : val ue- of
sel ect="chaptitle”/></title>

<link rel ="styl esheet” type="text/css” href="YOUR _CSS. css”
title="Style”/>

</ head>

<body>

<t abl e wi dt h="705" cel | spaci ng="0" cel | paddi ng="0">

<I—Start the the Top section here —
<tr w dth="705">

<td width="705">

<I—PULL I N THE | MPORTED BANNER STYLESHEET HERE—
<xsl : appl y-i mports sel ect ="banner”/>
</td>

</tr>

<I—End the the Top section here —
</t abl e>

</ body>

</htm >

<I—Use the inported Banner stylesheet for styling—
<xsl :tenpl ate mat ch="banner” >

<xsl : appl y-i nports/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

The Web page produced for our sample Gateways Guide using the XML and XSL files described
in the previous pages is shown in Figure 11.

16

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Figure 11. Web Page Produced Using XSL Import Files

Whit's Hae | Abed CTE | Projacts | Padasrch | Publcstio | CT6 Tooks

Opening Gateways

=
e
. :.'

Acknowledgrmants

Center for Technology in Government

Univarsity at Albany, State Univarsitg of Hew York

Cippabeg CRR-wdv Homd | Saaeeys Projesl Hor | Inbaraclivi Tool§

EDRF Warsion | Thcd Only Veraion | Eml DeSurrmnl

Opening Gateways
A Practical Guide for Designing Electronic
Records Access Programs

Theresa A. Pardo

e o Commethe

Expiri P gnsl

Sharon 5. Dawes

Anthony M. Cresswell

Imtraduction

L

Sacond Edition Janwary 2002

sl depcophion of

fha lepls

Gadfing Fendy mith a2
Prslbminasy Fiegrarm
D seoaptics

Ewampls ol g
Prelmmirizs Picgram
Dgpcniphcs For fig
Chilgesn's Fiodsof

Gl gy g bei o

Assessment Tool

Dimansians s laied bo

Center for Technalogy in Government
Linkersity at Albary, SLINY

1535 Western Avenis

Aoy, WY 12203

Phone: (S18) 44923807

Fae (518) 442-3588

E-mail: irfodihetn el ey

hitp: enenes Cig alamy ey

The Certer grants perrmession o reprint this document provided this cowver

Dynamic Interactive Sites

The examples used so far have focused on separation of content and style in static pages; that is,
HTML pages with predefined text and images. This type of document lends itself to an XML
framework perfectly due to its inherent structure, stability, and standardization. A publication
such as the Gateways Guide adheres to a hierarchy with chapters and sections and paragraphs.
For that type of Web site, XML is a great match.

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

However, few Web sites contain only that type of content. Most Web sites today have some kind
of dynamic and interactive content involving external files or databases and transactions. Even
simple forms involve some level of interaction.

So now we have to consider how to handle this situation where content is not restricted to text in
an XML file, but includes data in a relational database, and content selection involves not just
XSL transformations, but programming logic. Can we incorporate different data structures and
processing algorithms into our XML framework?

As Figure 12 illustrates, Cocoon does offer a structure for handling this situation by not only
separating content from style, but from logic as well. Within Cocoon, the separation of logic is

handled in a special type of file called an “XSP” file.

Figure 12. Logic, Content, and Style Separation in Cocoon Publishing Framework

Management
Logic — Content — Style
XSP
Two views of XML
logic/content/style

This structure allows you to manage the process efficiently by segregating duties. An application
programmer, for example, can work on the processing logic without worrying about or, more
importantly, interfering with the style or content elements. In fact, it enables parallel development
because logic, content, and style are worked on simultaneously and independently and then
integrated in the final output.

Figure 13 shows an XSP file which contains only logic (in this case, Java and SQL code), no
content or style information. The XSP file is connected to its XML and XSL files in exactly the
same way that the XML file was connected to the XSL file: through processing instructions at the
start of the file that link it to the other files. In fact, an XSP file has a .xsl file extension so the
XML file links to the XSP file which links to the XSL stylesheets.

18 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Figure 13. XSL File Containing Logic Code
(Cocoon XSP File, simplified for example)

<?xm version="1.0"?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{
xm ns: xsp="htt p://ww. apache. or g/ 1999/ XSP/ Cor e”
xm ns: esql =" htt p: // apache. or g/ cocoon/ SQL/ v2" >

<| -COMVENT Code exanple sinplified for exanple —

<xsl :tenpl at e mat ch="page” >
<xsl : processi ng-i nstruction nane="xm -styl esheet” >hr ef ="r egi st er show. xsl ”
</ xsl : processi ng-i nstruction>

<! —COMMENT Defines the query string for the database —
<xsp: | ogi c><! [CDATA[

String usernane, prognane, password, t ;

private String assenbl yQuery()

t="sel ect * from XXXXXXXX where YYYYYY=""+user nane+"’"”
return t;

}o11>

</ xsp: | ogi c>

< —COMMENT verifies valid entry and redirects or allows in—
<xsp: | ogi c><! [CDATA[

if (request.getParaneter(“username”)==null) {

response. sendRedi rect (“si gnon. xm ") ;

HIT>

el se {![CDATA[

user nane=r equest . get Par anet er (“usernane”).replace(‘\’’, *");

11>

<! —COMMENT Dat abase connecti on and query —
<esql : connecti on>
<esql :driver>org.gjt. mm nysql . Driver</esql:driver>
<esql : dbur | >j dbc: nysql : / / XXXXXXXX/ XXXXXXX</ esql : dbur | >
<esql : user name>XXXXXX</ esql : user name>
<esql : passwor d>XXXXXX</ esql : passwor d>
<esql : execut e- query>
<esql : quer y><xsp: expr >assenbl yQuery() </ xsp: expr ></ esql : query>
<esql :resul t s>
<esql : rowresul t s>
<user >

type="text/xsl”

<user name><esql : get-string col um="user nane”/ ></ user name>
<pr ognanme><esql : get-stri ng col umm="prognane”/ ></ pr ogname>

</ user >
</ esql :rowresults>
</esql:resul ts>
<esql : no-resul t s>
<nor ecor ds/ >
</ esql : no-resul t s>
<esql :error-resul ts>
<dbpr obl em >
</esql:error-resul ts>
</ esql : execut e- query>
</ esql : connecti on>

<! —COMMENT Cl oses out the big else condition fromthe redirect if —

}

</ xsp: | ogi c>

<! —COMMENT Cl oses out the tenplate and the styl esheet —
</ xsl : t enpl at e>
</ xsl : styl esheet >

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

19

This content/logic/style structure enabled us to develop an interactive component of the
Gateways Guide in which users using online forms could register and create online worksheets
that employ the principles and practices described in the guide. Most importantly, the logic for
this system (involving a mySQL database, SQL, Java, and JavaScript coding) was developed
independently by application programmers using XSP files that were integrated into the

existing XML/XSL framework established for the guide. The result as seen in Figure 14 was an
interactive, dynamic application that not only had the same look and feel as the Gateways Guide
but actually used the same XML source documents and XSL stylesheets. In other words, content
and style was not duplicated or re-created for this new application; it was simply re-used.

Figure 14. Sample Dynamic HTML Page

;;Q/ : Center for Technology in Government

o University at Albany, State University of New York

il s Mgt | Aboild T | Probicls | Resesnch | Pubboalore | ST Toob | Partness | Educabon | Resonoss | CTO o

Dpening Galeways Operien SafewavsHome | Gafewans Prowect Homes | Texd Ol Wargion |

4

.
g —— Sign on to use Gateway Tools

fou must sagn on o use the omine, Nteracive |;13'|E'=‘.IE',' toals. K you have

Previous Scrern presadushy registered, your signon wall repeeyve the Fragram Flan namels)
assigned to you. Yow may then access an eastng Program Flan or create a
Casa Stuthy niews Program Flan

sl s ¥ this iz your initial registration, youw well be green an oplion to access an
Tortori existing Program Plan or create a new Program Flan

Click the Tuterial Ink at the left for a brief step-by-step walk-through on usng
the system

E-mail Address |
[your e-mal address provides & unigue wser nama)

Submit |

Wl Mérwy | Abcad CTG | Progects | Fesesnch | Publicaors | CTG Toobdrs | Padners | Edacalion Prégras | ST Homepaogs
Eesouroes | Tk of Contenbs | Privacy Steisment | Contack Uig | Search Qor S§e | CTO Ve Mewsg

20 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Lessons Learned

From our initial question of was there a better way to manage a Web site, our exploration of
XML and Cocoon delivered a resounding “yes.” XML not only alleviated some immediate
problems, but more importantly had a positive impact on fundamental workflow issues.

But we also realized that conversion of a Web site does not happen without some pain. The
learning curve was probably the biggest impact we experienced. For our initial developers who
were investigating XML and Cocoon for the first time with limited external resources and no
in-house knowledge, we measured a three-month learning curve before they became fully
productive.

Much of XML is similar to HTML, but much is different. The most significant difference is that
XML is not “page-based” like HTML, so it requires a different conceptual understanding and
approach. Whereas in HTML, you are basically creating pages, and the page is both your source
and output; in XML you are structuring your content and designing different deliveries. It is a
radically different way of thinking about your Web site. While some knowledge and skills are
transferable from HTML to XML, the same knowledge and skills can also be detrimental to
thinking within an XML framework. Even experienced HTML developers and programmers
need to learn anew as they move into an XML-based architecture.

On the positive side, our three-month learning curve has sharply declined within the past year as
external resources (books, Web sites, user groups) have increased and our in-house knowledge
base has grown. Experienced HTML Web developers brought on board since our Gateways
Guide prototype has been completed now experience a learning curve of three weeks (versus
the original team’s three months).

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 21

Resources

Basic XML References

Cocoon xml.apache.org/cocoon/index.html

Cocoon xml.apache.org

W3C Specifications www.w3.org

O’Reilly’s XML Site www.xml.com

OASIS Site (General XML) www.oasis-open.org

XML Cover Pages Site (OASIS) xml.coverpages.org

IBM Developer Works www-106.ibm.com/developerworks/xml

Site Using Cocoon www.gsa.gov/attachments/GSA PUBLICATIONS/extpub/11-Ballif-Vock-Switzerland.htm

Other General XML References

The XML FAQ www.ucc.ie/xml

XML Hack www.xmlhack.com

DevX www.devx.com/xml

XML 101 www.xml101.com

Dublin Core Metadata Initiative www.dublincore.org

DocBook
The DocBook standards www.docbook.org

Simple DocBook www.docbook.org/xml/simple/index.html
Docbook Slide and Website sourceforge.net/projects/docbook

PDF Example using DocBook Slides www.sun.com/software/xml/developers/slides-dtd
Introduction to DocBook www-106.ibm.com/developerworks/library/l-docbk.html

Tutorials on XML/XSL/XSLT

Transforming XML: www-106.ibm.com/developerworks/education/transforming-xml/index.html
Introduction to XSLT, Part I: www.webreview.com/2001/08 03/developers/index01.shtml

Introduction to XSLT, Part II: www.webreview.com/2001/08 10/developers/index02.shtml

Introduction to XSLT, Part III: www.webreview.com/2001/09 21/developers/index02.shtml
Introduction to XSLT, Part IV: www.webreview.com/2001/10_29/developers/index01.shtml
Introduction to XSLT, Part V: www.webreview.com/2001/11 26/developers/index01.shtml

Introduction to XSLT, Part VI: www.webreview.com/2001/12 20/developers/index01.shtml

XSL Concepts and Practical Use: http://www.nwalsh.com/docs/tutorials/xsl/xsl/slides.html

22 CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE

Newsletters, Lists, and Archives

XML Applications in Government (USGSA): www.gsa.gov/intergov

Inside XML Solutions (discontinued): www.elementkjournals.com
XML Developers: www.xmldevelopernewsletter.com

Monthly Archives for XML-DEV (OASIS): lists.xml.org/archives/xml-dev

Mulberry Open Forum on XSL www.mulberrytech.com/xsl/xsl-list

Conversion Tools and Editors
General Reference on Conversion Tools: www.xmlsoftware.com/convert

XMLPDF: www.xmlpdf.com

RTF Formatting Kit: www.schema.de/sitehtml/site-e/xmlnach0.htm
PDF to RTF Converter: www.iceni.com/geminiSet.html

RTF to XML Converter: www.logictran.com

XML Editor: www.xmlspy.com

CENTER FOR TECHNOLOGY IN GOVERNMENT: XML A NEW WEB ARCHITECTURE 23

